All Posts By

David Herrera

Astronomía General Cosmología

Los neutrinos

Los neutrinos son partículas muy elusivas, tanto que podrían atravesar una pared de plomo de 2 años luz de grosor sin darse ni cuenta. ¡Atravesaría una pared de plomo de casi 20.000.000.000.000 de kilómetros sin ninguna interacción electromagnética con ninguna partícula de ese elemento! es más, podría atravesar absolutamente todo el universo conocido sin interaccionar con nada. Y es que, aunque no te das cuenta, 70.000 millones de estas partículas atraviesan cada centímetro cuadrado de tu cuerpo cada segundo: mientras desayunas; mientras juegas al fútbol; mientras estás durmiendo…

SK

Super-Kamiokande: las paredes están cubiertas de 11.200 tubos fotomultiplicadores

En el Universo hay muchos neutrinos (aproximadamente unos 250 de media en cada centímetro cuadrado del vasto cosmos), pero como estos no sienten la fuerza nuclear fuerte ni la fuerza electromagnética es muy difícil detectarlos. Pero aún así se detectan, aunque únicamente son detectados 3 de media cada día en los grandes detectores de neutrinos repartidos por todo el mundo: el Súper Kamiokande japonés; ANTARES en el mar Mediterráneo; Ice Cube en las profundidades del hielo del Polo Sur y hasta uno en la Estación Espacial Internacional —entre otros— están a la caza de esta escurridiza partícula fantasma.

Dicho de otra manera: a lo largo de tu vida, únicamente 2 neutrinos interaccionarán con núcleos atómicos de tu cuerpo (uno cada 35-40 años de los cientos y cientos de miles de millones que podrían hacerlo por segundo).

¿Serán los neutrinos candidatos reales a formar parte de algún tipo de materia oscura? La respuesta es que no. Y aunque recientemente se ha descubierto (premio Nobel de física al canto en 2015) la insignificante masa de esta partícula, que haría de ella una candidata perfecta a algún tipo de materia oscura —como la materia oscura caliente que se mueve a velocidades relativistas—, esto no se sostiene en el marco de la cosmología actual, por lo tanto los neutrinos quedan descartados.

En física cuántica, en la familia de los fermiones, están los quarks y los leptones. Los quarks son los componentes de los protones y los neutrones de los núcleos atómicos; los leptones son los electrones diversificados en sus tres familias al igual que lo están los neutrinos, diversificados en sus tres familias también, o sabores, como realmente se llaman —también se podría decir que tienen múltiple personalidad.

oscilaciones de neutrinos

Oscilaciones de los tres tipos de neutrinos: electrónicos, muónicos y tauónicos

De los fermiones, el quark top es el más masivo de todos con una masa 70.000 veces superior a la del quark up, que a su vez es 6 veces más msivo que el electrón. Y conociendo todo esto, ¿sabías que la masa de un neutrino es una millonésima parte de la masa de un electrón? Es decir, la masa de un neutrino es algo tan insignificante que no valdría la pena hablar de ella de no ser por lo significativo de ese hecho precisamente. Hasta hace poco se tenía bastante seguridad de que los neutrinos tenían masa nula debido a su no interacción con nada. Hoy en día, debido a sus oscilaciones cuánticas, que son los cambios aleatorios de esos sabores a lo largo de su recorrido, sabemos que al menos dos de los tres tipos de neutrinos que existen sí tienen masa, y esto nos abre un abanico enorme de posibilidades de observación del Universo a través de ellos.

Por medio de las ondas electromagnéticas hemos conseguido observar el Universo tal y como era justo en el momento en el que esa luz pudo escapar del plasma primordial extremadamente denso que se originó después del Big Bang. Esto ocurrió cuando este plasma alcanzó los 3000 K, unos 380.000 años después del Big Bang. A partir de ese momento, los fotones pudieron viajar libremente a través del espacio sin interaccionar con las partículas dispersas. Este fenómeno es conocido como era de la recombinación; la radiación de fondo de microondas es precisamente el resultado de ese periodo, pero… si los neutrinos no interaccionan con prácticamente nada y la naturaleza de su creación está en eventos extremadamente violentos, ¿podríamos llegar a ver a través de ellos el mismísimo Big Bang? Pues el mismísimo Big Bang no, pero si pudiésemos detectar los neutrinos creados en el principio del Universo lo estaríamos viendo tal y como era ¡un segundo después de la “Gran Explosión”! Interesante, ¿verdad?

¡Física completamente nueva!

Enamorado del cielo. Interesado en las ciencias del espacio y la ciencia en general. Me encanta aprender y compartir lo aprendido.
Creador de www.universoeterno.com y @universo.eterno en instagram.

Share

Astronomía General

Expansión del Universo

La limitación de 300.000 kilómetros por segundo de la velocidad de la luz hace que sólo podamos ver la parte del Universo que tenemos lo suficientemente cerca como para que su luz nos haya llegado ¿Cómo es de grande el Universo entonces? ¿Dónde se encuentran los límites? No se sabe la magnitud real, de hecho no sabemos ni siquiera si tiene límites, pudiendo ser infinito. Lo que sí sabemos a ciencia cierta es que el universo observable, que se estima que es una pequeñísima parte del universo real, mide casi cien mil millones de años luz. Pero… si sabemos que la edad del Universo es de 13 800 millones de años, ¿cómo es posible que sea siete veces mayor si la velocidad de la luz no se puede rebasar? Según la teoría de la relatividad especial, nada puede moverse más rápido que la luz, y aunque pueda crearse una paradoja en el hecho de que dos objetos del universo se hayan separado casi 100 000 millones de años luz en un tiempo de sólo 13 800 millones de años, esta separación, teniendo en cuenta los sistemas de referencia, no entra en conflicto con la teoría de la relatividad general, ya que sólo afecta al movimiento en el espacio, pero no al espacio en sí, que puede extenderse a una velocidad superior a la de la luz. De modo que la luz que nos llega de la radiación de fondo cósmico, que es la luz más antigua que podemos detectar, ha recorrido casi 45 000 millones de años luz en algo más de 13 400 millones de años hasta llegar a nosotros.

LEY DE HUBBLE

Expansión del Universo ilustrada con un globo. Crédito: Eugenio Bianchi

El Universo que vemos tiene esa dimensión debido a la expansión acelerada, que hace que las primeras galaxias que emitieron la luz de hace más de 13 000 millones de años se encuentren hoy muchísimo más alejadas, determinando esa distancia por la ley de Hubble y su constante de expansión del Universo, llmada ‘constante de proporcionalidad’ o ‘constante de Hubble’, que es la inercia acelerada con la que se va “estirando” el Cosmos, siendo, según los últimos cálculos, de 70 km/s/Mpc (1 Mpc = 3,3 millones de años luz).

La ley de Hubble nos permite hacer una estimación de la edad del Universo, ya que esta constante de proporcionalidad es igual a la velocidad dividida entre la distancia. Para que sea entendible pongamos un ejemplo: sabiendo que la relación entre velocidad de expansión y distancia es lineal tenemos que, una galaxia situada a 2 Mpc se estará alejando a 140 km/s/Mpc (una galaxia situada a 3 Mpc se aleja a 210 km/s/Mpc, una situada a 4 Mpc a 280, y así sucesivamente). Dividiendo la distancia (2 Mpc), en metros, entre la velocidad (140 km/s), en metros por segundo, nos arroja un valor de unos 13 900 millones de años. Dicho de otra manera, esa galaxia a esa velocidad tardaría 13 900 millones de años en recorrer la distancia que nos separa de ella. Lo mismo ocurre con galaxias más lejanas y más cercanas, que se están alejando a mayor o menor velocidad (según el caso) y, puesto que la constante es proporcional (puedes hacer tú mismo los cálculos), tardarían lo mismo en recorrer la distancia que nos separa a nosotros de todas y cada una de ellas, es decir 13 900 millones de años. Teniendo en cuenta que la atracción gravitatoria entre galaxias tiende a ralentizar un poco esa velocidad, el cálculo definitivo es de 13 800 millones de años.

De modo que todo se aleja más rápido cuanto más lejos se encuentre; todo esto, por supuesto, sin tener en cuenta la aceleración gravitatoria local que podría hacer que dos galaxias se atrayesen en lugar de alejarse, como ocurre con Andrómeda y la Vía Láctea, que, como todos sabemos, algún día colisionará y se fusionará con nosotros dando como resultado una galaxia espiral gigante.

RADIO DE HUBBLE

Representación gráfica de nuestro radio de Hubble. Crédito: Wikipedia

Cómo hemos dicho al principio de la entrada el Universo observable tiene un diámetro de casi 100 000 millones de años luz. Si tomamos como referencia la constante de Hubble tendríamos que un objeto lo suficientemente alejado de nosotros se estaría alejando a una velocidad superior a la de la luz, por lo tanto hay un lugar en el Universo a una distancia determinada exacta en la que la velocidad de expansión coincide con la de la luz, de modo que a partir de ese punto nunca podría llegarnos esa luz que se aleja más rápido que la propia velocidad de la luz —no obstante, por muy alejadas que se encuentren dos galaxias en una determinada época, siempre hay un tiempo finito en el pasado donde se encontraban a una distancia lo suficientemente pequeña para que la luz pudiera viajar entre ellas en el resto de tiempo disponible hasta dicha época. Al conjunto de puntos que distan esa distancia alrededor de nosotros, es decir, a la distancia a la que la ley de Hubble predice que la velocidad de expansión es igual a la de la luz se le llama radio de Hubble. El valor de este radio es de 14 000 millones de años luz, dato muy curioso puesto que se asemeja mucho a la edad del Universo de 13 800 millones de años pero que no tienen nada que ver. Otro de los misterios de nuestro vasto Universo.

Crédito imagen de portada: Jose Luis Crespo Cepeda.

Enamorado del cielo. Interesado en las ciencias del espacio y la ciencia en general. Me encanta aprender y compartir lo aprendido.
Creador de www.universoeterno.com y @universo.eterno en instagram.

Share

Astronomía General

La magnitud de las estrellas

Las estrellas y los objetos del cielo emiten luz que, independientemente de la distancia a la que se encuentran, nos llega con mayor o con menor intensidad, siendo más luminosos cuanto más cerca, más grandes, y/o mayor temperatura tengan, y viceversa. A esa luminosidad se le llama magnitud, y se sabe que ya desde las antiguas civilizaciones era clasificada por la intensidad de su brillo.
Los astrónomos griegos denominaban a las estrellas más brillantes del cielo de la época, estrellas de primer tamaño, o como acabamos de decir, magnitud, que a la postre sería el nombre que se le daría a ese brillo, ya que el astrónomo griego Hiparco catalogó un total de mil estrellas visibles a simple vista (aproximadamente una cuarta parte de las estrellas que podemos ver de esa manera), denominando su brillo como “magnitud”. A las estrellas más brillantes las catalogó como de primera magnitud, y a medida que descendía su brillo las iba registrando de segunda, tercera, cuarta, quinta y, las más tenues, de sexta magnitud.

Sirio: la estrella más luminosa del cielo nocturno. Imagen: Julio Hoya

 

A día de hoy esa forma de medir la luminosidad de los objetos del cielo, conserva, además del nombre, la esencia de la manera en la que se comenzó a clasificar —aunque actualmente no se limita únicamente a esas seis magnitudes.

TIPOS DE MAGNITUD (APARENTE Y ABSOLUTA)

Hay estrellas muy brillantes en el cielo, que lo son, simplemente, porque están relativamente cerca. Sirio es una de las estrellas más cercanas a nuestro Sistema Solar —concretamente la octava—, se sitúa a 8,6 años luz de nosotros y es la más brillante después del Sol. También hay estrellas muy luminosas, como Betelgeuse, una de las más brillantes del cielo, que a diferencia de Sirio, se halla a mucha distancia, más de 600 años luz de nosotros. Por lo tanto, tenemos que Betelgeuse se encuentra 70 veces más alejada que Sirio pero poseen casi el mismo brillo, ¿qué pasaría entonces si las dos se encontrasen a la misma distancia?
Ahí es donde difieren los dos tipos de magnitudes que se utilizan (por ahí van los tiros, vamos). Pero vayamos por partes.

MAGNITUD APARENTE

La magnitud aparente es la luminosidad que nos muestra el objeto tal y como se ve en el cielo, independientemente de la temperatura, del tamaño o de la distancia a la que se encuentre, y se expresa con un número que puede resultar, dependiendo del brillo, positivo o negativo, siendo más brillante cuanto menor es ese número (un objeto con una magnitud negativa será siempre más brillante que uno con una magnitud positiva).
Podemos comprobar que, como dijimos al principio de la entrada, hoy en día observamos magnitudes que distan mucho de la primera a la sexta empleadas por Hiparco para su catálogo. Más adelante veremos de qué se habla aquí con unos ejemplos, aunque el hecho de que haya magnitudes con un valor negativo ya te debería dar una pista sobre lo que verás.

MAGNITUD ABSOLUTA

Por contra, la magnitud absoluta es la luminosidad real que tiene el astro, su brillo intrínseco tal y como lo mediríamos si pudiéramos estar a una distancia muy concreta de donde se encuentra el objeto. Esta distancia es dada y será la misma para todos.
Nuestro Sol es lo más brillante que podemos observar, y lo hace con un brillo muchas órdenes de magnitud mayor que el segundo objeto más brillante, que aunque no sea de naturaleza estelar también lo hace -y mucho-: la Luna. Evidentemente el hecho de que nuestro satélite sea así de brillante no es ni más ni menos que por su cercanía a la Tierra. Pero hay estrellas cientos de veces y hasta millones de veces más luminosas que nuestro Astro Rey que son imposibles de ver a simple vista debido a su lejanía.
La magnitud absoluta se expresa exactamente igual que la aparente, pero para su cálculo hay que tener en cuenta otros factores.

Diferencias de magnitudes

 

CÁLCULO DE MAGITUDES

Para realizar las mediciones de magnitudes, tanto aparentes como absolutas, los astrónomos utilizan una escala de tipo logarítmico. De acuerdo a esta escala el aumento o la disminución de una magnitud supone aumentar o disminuir el brillo en un factor de 2,51 que es la raíz quinta de 100, es decir que una estrella 5 magnitudes mayor que otra será 100 veces más luminosa, puesto que sus magnitudes diferirán en un factor de 100.

CÁLCULO DE LA MAGNITUD APARENTE

Los astrónomos miden la luminosidad aparente de una estrella en el cielo proyectando sobre el campo de visión del telescopio utilizado una luz que hace las veces de “estrella artificial” y cuyo brillo se va ajustando hasta hacerlo coincidir exactamente con el de la estrella a medir, en ese momento el medidor nos estará dando la magnitud aparente de la estrella analizada.

CÁLCULO DE LA MAGNITUD ABSOLUTA

Para calcular la magnitud absoluta, dejando las ecuaciones matemáticas necesarias para ello de lado, los astrónomos se imaginan la estrella a medir a una distancia de diez parsecs de nosotros, que vienen a ser unos 32 años luz, es decir, la magnitud absoluta es la luminosidad total que un astro tendría si se encontrase a 32 años luz exactamente en lugar de a la distancia real a la que se encuentre.

Nebulosa de la Laguna. Imagen: Roberto Bravo

Nuestro Sol tiene una magnitud aparente enorme debido a su cercanía, -26,74 y una absoluta pequeña, +4,83 debido a que no es una estrella muy luminosa. Es decir, si pudiésemos alejarlo de nosotros de tal manera que en lugar de a 150 000 millones de kilómetros, o lo que es lo mismo, 8 minutos luz, se encontrase a 32 años luz, estaríamos viendo una estrella en el límite de lo observable a simple vista. Por contra, Antares (por poner el ejemplo contrario), que es una estrella muy luminosa en la constelación de Scorpio, tiene una magnitud aparente de +1,09 a 550 años luz de nosotros y una absoluta de -5,28.

M81, la galaxia de Bode (centro) y M82, la galaxia del Cigarro. Imagen: Roberto Bravo

La magnitud absoluta de las galaxias es muchísimos órdenes de magnitud mayor que la de las estrellas, evidentemente, pero… si nos situamos a 32 años luz de una galaxia, por muy pequeña que sea, nos encontraremos muy en su interior, en algunas incluso dentro de su núcleo, ¿entonces…? Puesto que la magnitud absoluta se puede hallar si se conoce la magnitud aparente y la distancia en parsecs, con una simple ecuación, aplicada en el caso de las galaxias, nos dan esos valores muchísimo mayores que los de las estrellas.

 

MAGNITUDES EN EL SISTEMA SOLAR

Para el cálculo de la magnitud absoluta de planetas, cometas y asteroides del Sistema Solar, en lugar de los 10 parsecs (32 años luz; Plutón se encuentra a 4 horas luz) se emplea una unidad astronómica (UA), que es la distancia media entre la Tierra y el Sol, unos 150 millones de kilómetros.

Crédito foto de portada: NASA

Enamorado del cielo. Interesado en las ciencias del espacio y la ciencia en general. Me encanta aprender y compartir lo aprendido.
Creador de www.universoeterno.com y @universo.eterno en instagram.

Share

Astronomía General Curiosidades

El viaje del fotón

cadena-pp
Cadena protón-protón

El interior del Sol —y de las estrellas en general— es un lugar extremadamente denso, en él se crea la luz que nos llega constantemente. Se fusionan átomos de hidrógeno para producir helio por la llamada “cadena protón-protón” y, como consecuencia, se libera una gran cantidad de energía, neutrinos electrónicos y fotones muy energéticos en forma de rayos gamma.

En estrellas mucho más masivas que el Sol, en lugar de la cadena protón-protón, la fusión de hidrógeno en helio se produce de una manera más compleja por medio del denominado “ciclo C-N-O (Carbono – Nitrógeno – Oxígeno)”, en el cual también se libera gran cantidad de energía, neutrinos electrónicos y fotones —al igual que en la “cadena protón-protón” de nuestro Sol—, pero utilizando esos tres elementos como catalizadores.

Estos fotones que nos llegan —que son la luz que vemos del Sol— emplean tan solo ocho minutos en el viaje desde su superficie hasta nuestros ojos. Pero ese viaje del fotón no es tan sencillo como aparenta ser, veamos el porqué.

Desde que el fotón es emitido, recorre menos de un milímetro antes de ser absorbido rápidamente por cualquier núcleo atómico que lo rodea —recordemos, que el interior de las estrellas es de una densidad gigantesca.

el_interior_solar-svg
El viaje del fotón

Estos núcleos atómicos liberan la energía que han absorbido de esos fotones energéticos en forma de más fotones; muchos más fotones menos energéticos que los anteriormente absorbidos, pero que recorren otro milímetro y son nuevamente absorbidos por otros núcleos atómicos que liberan más fotones. Estos nuevos fotones recorren unos pocos milímetros… ¡y son absorbidos de nuevo! ¡Fotones y más fotones absorbidos y liberados continuamente!

Desde que son emitidos en las reacciones de fusión de los núcleos estelares, los fotones sufren millones y millones de interacciones con núcleos atómicos, haciendo que el ascenso a las capas externas sea casi una misión imposible. Pero poco a poco, algunos fotones consiguen salir al exterior.

Dicho de otra manera: los fotones originados por el foton original, producto de la fusión del hidrógeno en helio en el interior de nuestra estrella, pueden tardar miles o incluso decenas de millones de años en salir al exterior… sí, has leído bien, ¡decenas de millones de años!

De modo que, la luz que nos llega del Sol ha tardado ocho minutos en llegar desde su fotosfera pero puede llevar viajando por su interior desde la era de los dinosaurios para poder iluminarnos y ser nuestra fuente de vida.

 

Enamorado del cielo. Interesado en las ciencias del espacio y la ciencia en general. Me encanta aprender y compartir lo aprendido.
Creador de www.universoeterno.com y @universo.eterno en instagram.

Share