Browsing Category

Astronomía General

Astronomía General Noticias

La foto más grande del Universo conocido pesa dos millones de gigabytes.

El 19 de Diciembre de 2016 tuvo lugar la publicación de los primeros datos así como de las imágenes de gran campo en cinco bandas espectrales del estudio que ha llevado a cabo el Pan-STARRS.

pan-starrs
Esta imagen comprende una vista de todo el cielo visto desde Hawaii por el Observatorio Pan-Starrs1 y es el resultado de medio millón de fotografías, de unos 45 segundos de exposición, tomadas a lo largo de 4 años. Si imprimiésemos la imagen en toda su resolución, la imagen tendría unos dos kilómetros de largo. Crédito: Danny Farrow, Pan-STARRS1 Science Consortium and Max Planck Institute for Extraterrestrial Physics.
Imagen en alta resolución (4474×2009) TIFF, 18Mb

“Los estudios Pan-STARRS1 permiten acceder a millones de imágenes y usar la base de datos y catálogos que contienen medidas precisas de miles de millones de estrellas y galáxias,” comenta el Dr. Ken Chambers, Director del Observatorio Pan-STARRS. “Pan-STARRS ha hecho descubrimientos desde NEOs (near earth objects) y objetos del cinturón de Kuiper en el sistema solar hasta planetas solitarios entre estrellas; se ha mapeado el polvo de nuestra galaxia en tres dimensiones y se han encontrado nuevas oleadas de estrellas; y se han encontrado nuevos tipos de explosiones estelares y quásares in el universo temprano.”

“Con esta publicación prevemos que científicos – así como estudiantes e incluso usuarios casuales – de todo el mundo harán numerosos nuevos descubrimientos sobre el universo a partir de la riqueza de los datos obtenidos por Pan-STARRS.” añadió Chambers.

Los cuatro años de datos comprenden tres mil millones de objetos individuales, incluyendo estrellas, galaxias, y otros objetos varios. La inmensa colección contiene 2 petabytes de datos, lo que equivale a mil millones de selfies, o cien veces el contenido total de la Wikipedia.

 

El primer observatorio Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) es un telescopio de 1.8 metros en la cima del Haleakalā, en la isla Hawaiana de Maui. En Mayo de 2010, se embarcó en el estudio de la digitalización del cielo en luz visible e infrarrojo cercano. Este fue el primer estudio en observar todo el cielo visible desde Hawaii en varios espectros de luz, con el fin de encontrar objetos variables, errantes y eclipsantes, incluyendo asteroides potencialmente peligrosos para la Tierra. El estudio ha llevado unos cuatro años en completarse, y se ha escaneado el cielo 12 veces en cada uno de los 5 filtros.

“Alcanzar la alta calidad de las medidas del Pan-STARRS1 y mantenerla a lo largo de esta inmensidad de datos fue un desafío computacional y los resultados son un tributo a los esfuerzos de nuestro reducido equipo de científicos del UH IfA y de nuestros colaboradores, los cuales han trabajado para procesar y calibrar este extraordinario volumen de datos en bruto,” dice Dr. Eugene Magnier, líder del equipo de Procesado de Imagen Pan-STARRS.

La publicación se llevará a cabo en dos fases. La primera que se ha publicado el 19 de Diciembre de 2016 es “Static Sky”, el cual es la medica de cada una de las épocas individuales. Para cada objeto hay un valor medio para su posición, su brillo y sus colores. En 2017, el segundo conjunto de datos será publicado, en forma de catálogo con datos e imágenes para cada época individual.

Los datos del estudio residen en el Archivo Mikilski para telescopios espaciales (MAST), el cuál sirve de respositorio para todas las observaciones ópticas y ultravioletas para la NASA, algunas de las cuales datan de principios de 1970. Incluye también datos del Hubble, Kepler, Galex y una gran variedad de otros telescopios. Pan-STARRS marca al decimonovena misión que se archiva en MAST.

Pan-STARRS1 Observatory atop Haleakala Maui at sunset. Credit: Photo by Rob Ratkowski

Pan-STARRS1 Observatory atop Haleakala Maui at sunset. Credit: Photo by Rob Ratkowski

 

En este enlace puedes hacer una consulta en la base de datos del archivo MAST para el PAN-STARSS.

 

Share

Astronomía General Efemérides

¿Cuánto dura un año?

Bueno, estamos a punto de completar otro año, lo que es una excusa perfecta para explicar algo que a lo mejor no es tan evidente como parece: ¿Qué es un año?. La respuesta correcta es depende, ya que un año puede ser varias cosas, entre las cuales se encuentran:

1. Año civil o año calendario: Es lo que todos tenemos en mente desde un primer momento cuando pensamos en un año, un periodo que, según nos enseñaron en la escuela, tiene una duración de 365 días y abarca desde el 1 de enero hasta el 31 de diciembre. Es el patrón de tiempo estándar que regula la vida social, civil y religiosa de una gran cantidad de países, principalmente los occidentales  judeocristianos, ya que las culturas islámicas usan un calendario lunar. En realidad su duración es algo mayor, con una duración media de 365 días, 5 horas y 48 minutos, sin tener en cuenta años bisiestos no otros ajustes.

2. Año trópico, tropical o solar: Es el tiempo que nuestro Sol necesita para recorrer aparentemente 360º sobre la proyección de la eclíptica, tomando como referencia su posición en el el equinoccio de primavera, cuando el Sol se encuentra en el punto Aries, donde coinciden la eclíptica y el ecuador celeste. El uso del Sol como medida del tiempo se remonta a la antigüedad y distintas culturas lo han utilizado de forma más o menos precisa, con la intención de determinar con precisión los cambios estacionales y los periodos de siembra y cosecha asociados a ellos. De igual modo es el patrón de referencia que se usa en nuestra cultura para definir el año civil. El problema es que el año trópico tampoco es regular, ya que el lento movimiento del eje de giro de la Tierra (precesión) hace que el próximo paso del Sol por el punto Aries se produzca un poco antes de completar una vuelta completa en la eclíptica. En nuestra adaptación con el año civil resolvemos este problema introduciendo los años bisiestos, que corrigen este desfase cada cuatro años. Tiene establecida una duración media de 365 días, 5 horas,  48 minutos y  45,10 segundos.

Punto de partida para el cálculo del año trópico.

Punto de partida para el cálculo del año trópico.

 

3. Año sidéreo: Llamamos así al intervalo de tiempo que emplea la Tierra en pasar dos veces por un punto concreto en su traslación alrededor del Sol. Este punto se determina tomando como referencia las estrellas. De esta manera los movimientos de precesión y nutación de nuestro planeta no afectan a la medida, es la forma habitual que tienen los astrónomos de determinar la duración de una traslación terrestre completa por ser la más precisa. Su duración es de 365 días, 6 horas, 9 minutos y 9,7632 segundos.

Año sidéreo

Año sidéreo

 

Como veis el cálculo de algo tan aparentemente trivial como es la duración de un año encierra multitud de factores a tener en cuenta y nos ofrece valores distintos en función de qué puntos de partida elijamos. No es por nada que todas las agencias espaciales del planeta dedican una gran cantidad de tiempo y recursos en precisar lo más exactamente posible nuestra posición en el espacio y el ritmo al que nos movemos por él.

 

 

Interesado en astronomía y cualquier cosa relacionada con el espacio y la ciencia en general, ya sea real o ficción. Me encanta enredar con casi cualquier cosa que se enchufe y tenga luces y botones.
Eterno aprendiz de fotógrafo.

Share

Astronomía General Curiosidades

El viaje del fotón

cadena-pp
Cadena protón-protón

El interior del Sol —y de las estrellas en general— es un lugar extremadamente denso, en él se crea la luz que nos llega constantemente. Se fusionan átomos de hidrógeno para producir helio por la llamada “cadena protón-protón” y, como consecuencia, se libera una gran cantidad de energía, neutrinos electrónicos y fotones muy energéticos en forma de rayos gamma.

En estrellas mucho más masivas que el Sol, en lugar de la cadena protón-protón, la fusión de hidrógeno en helio se produce de una manera más compleja por medio del denominado “ciclo C-N-O (Carbono – Nitrógeno – Oxígeno)”, en el cual también se libera gran cantidad de energía, neutrinos electrónicos y fotones —al igual que en la “cadena protón-protón” de nuestro Sol—, pero utilizando esos tres elementos como catalizadores.

Estos fotones que nos llegan —que son la luz que vemos del Sol— emplean tan solo ocho minutos en el viaje desde su superficie hasta nuestros ojos. Pero ese viaje del fotón no es tan sencillo como aparenta ser, veamos el porqué.

Desde que el fotón es emitido, recorre menos de un milímetro antes de ser absorbido rápidamente por cualquier núcleo atómico que lo rodea —recordemos, que el interior de las estrellas es de una densidad gigantesca.

el_interior_solar-svg
El viaje del fotón

Estos núcleos atómicos liberan la energía que han absorbido de esos fotones energéticos en forma de más fotones; muchos más fotones menos energéticos que los anteriormente absorbidos, pero que recorren otro milímetro y son nuevamente absorbidos por otros núcleos atómicos que liberan más fotones. Estos nuevos fotones recorren unos pocos milímetros… ¡y son absorbidos de nuevo! ¡Fotones y más fotones absorbidos y liberados continuamente!

Desde que son emitidos en las reacciones de fusión de los núcleos estelares, los fotones sufren millones y millones de interacciones con núcleos atómicos, haciendo que el ascenso a las capas externas sea casi una misión imposible. Pero poco a poco, algunos fotones consiguen salir al exterior.

Dicho de otra manera: los fotones originados por el foton original, producto de la fusión del hidrógeno en helio en el interior de nuestra estrella, pueden tardar miles o incluso decenas de millones de años en salir al exterior… sí, has leído bien, ¡decenas de millones de años!

De modo que, la luz que nos llega del Sol ha tardado ocho minutos en llegar desde su fotosfera pero puede llevar viajando por su interior desde la era de los dinosaurios para poder iluminarnos y ser nuestra fuente de vida.

 

Enamorado del cielo. Interesado en las ciencias del espacio y la ciencia en general. Me encanta aprender y compartir lo aprendido.
Creador de www.universoeterno.com y @universo.eterno en instagram.

Share

Astronomía General Eventos Astronómicos

Bienvenidos al Invierno astronómico

¡Bienvenidos al Invierno astronómico!

Hoy, 21 de Diciembre, a las 11:44 (GMT+1) comienza la cuenta atrás de los 88 días y 23 horas que nos separan del Equinoccio de Marzo; esta noche es la más larga del año, así que si eres de los afortunados con un cielo despejado, no puedes perder la oportunidad de salir al campo con los cacharros y observar el firmamento.

Analema Austríaco, APOD 22 Septiembre de 2012, Copyright y Crédito de Robert Pölzl

El Solsticio de Diciembre marca el comienzo del invierno en el hemisferio norte y no es otra cosa que la mínima altura que toma el Sol sobre el horizonte, observa el gráfico a continuación:

equinocio-solsticio

Representación de los equinoccios y los solsticios

 

Como puedes observar, hemos dibujado la Tierra en el medio y es el Sol el que discurre a lo largo de la eclíptica. Tal y  como está representado el Sol, éste está por encima del ecuador celeste, seguirá su viaje hasta llegar al Solsticio de Junio, seguirá avanzando, hasta llegar al Equinoccio de Septiembre, momento en el cual el Sol pasará de estar en el hemisferio norte a estar en el hemisferio sur, continuará hasta llegar al Solsticio de Invierno, o sea hoy y, unos 88 días después, llegará al Equinoccio de Marzo, momento en el que el Sol pasará a estar de nuevo en el hemisferio norte y punto que se toma como referencia para las coordenadas ecuatoriales.

Esperamos que disfrutéis de este día de Mercurio y de la noche más larga del año. ¡Ah! y si nos leéis desde el hemisferio sur ¡Bienvenidos al Verano!

Aficionada a la astronomía. Bloguer fundadora de www.elinvernaderocreativo.com y www.holamuybien.es , experta en Marketing y Comunicación Digital en la agencia Vitamina Marketing (www.vitamina.marketing)

Share